主页 > 留学指南 > 留学材料  > 

留学材料专业_留学材料专业档案袋

留学材料专业_留学材料专业档案袋

谢谢大家对留学材料专业问题集合的提问。作为一个对此领域感兴趣的人,我期待着和大家分享我的见解和解答各个问题,希望能对大家有所帮助。

文章目录列表:

1.留学美国材料工程硕士专业怎么样
2.澳洲留学材料工程专业哪所大学好
3.美国留学材料科学与工程专业个人陈述范文三篇
4.日本留学新材料类专业
5.材料物理学专业出国读研可以去哪些学校
6.日本留学材料专业全面解析

留学材料专业_留学材料专业档案袋(图1)

留学美国材料工程硕士专业怎么样

 美国材料科学涉及材料的结构分析、新材料物质的发现及其在各个行业中的应用,材料工程领域在原子水平上研究材料特性与其机械结构之间的关系。那么,美国材料工程硕士专业怎么样?

  一、美国材料工程硕士专业怎么样?

 回答:美国材料工程硕士专业是非常不错的,不仅研究领域广,而且具有很不错的就业前景。

  二、美国材料工程硕士专业有何优势呢?

 美国材料工程硕士专业的科学家和工程师开发其他工程师设计所需的金属、陶瓷、半导体、聚合物、复合材料和生物材料等材料。合适的材料有助于推动所有行业的产品创新,从飞机、医疗设备、小工具到乐器和环保技术。

 材料工程以热力学、统计力学和纳米科学等支持领域为基础。材料科学的学习课程将材料的物理、化学和机械性能的深入知识与生产技术的培训以及为广泛的应用选择合适的材料相结合。大学提供该领域的广泛专业,例如磁性和纳米材料、结构材料、电子材料和界面、能源材料和应用、生物材料等。

 毕业生学习在原材料成为设计产品的过程中材料的行为以及它们的特性如何变化。

 大多数专业人员在办公室工作,使用计算机辅助设计(CAD)软件或在开发实验室工作,在那里他们可以使用尖端设备。其他人在工厂或研究所担任主管。

  三、那么,美国材料工程硕士专业有哪些比较好的院校推荐呢?

 麻省理工学院(MIT)

 加州大学伯克利分校

 斯坦福大学

 美国西北大学

 佐治亚理工学院

 哈佛大学

 伊利诺伊大学厄巴纳香槟分校

 加州大学洛杉矶分校(UCLA)

 宾夕法尼亚州立大学

澳洲留学材料工程专业哪所大学好

1、莫纳什大学材料工程专业

莫纳什大学材料工程专业描述

莫纳什大学:高级材料工程专业课程包含了实用性材料,如金属、聚合物、生物材料、纳米材料和能源相关的材料;本专业着重关注由现代技术领导的材料工程的最新发展,包括材料的利用率和电子,化学和机械性能所支撑的微观结构;本专业课程旨在培养学生在解决工程结构的设计和施工,流程和设备的技术、经济和环境问题上利用材料的核心作用;本专业课程适合急切想学到材料工程领域专业知识的应届毕业生以及专业工程师

2、昆士兰大学材料工程专业

就读昆士兰大学材料工程专业优势

昆士兰大学:位居澳大利亚的八大名校前列,连续多年被亚洲周刊评为亚太地区最好的大学之一。在2001年的“优秀大学指南”中,昆士兰大学再次荣获昆士兰州第一。昆士兰大学商学院是澳洲仅六所获得AACSB认证的商学院之一,在澳大利亚政府对各大学就教学、研究、校园服务三项指标进行的质量评比中名列前茅。

3、卧龙岗大学材料工程专业

卧龙岗大学材料工程方向专业描述:

材料工程是每一个工程项目的核心:新材料技术发展扮演非常重要的角色。该课程结合材料科学与工程的基本技能,为学生提供在广泛的行业就业的能力。材料工程师知道如何从成千上万的选项中选择正确的资料做某项工作。他们懂得怎样改变流程或成分可以改变一种材料的性能。该课程强调设计的过程、制造、材料选择。

美国留学材料科学与工程专业个人陈述范文三篇

申请美国留学的学生不少,那么美国留学材料科学和工程个人陈述怎么写呢?这是很多留学生比较感兴趣的话题。和一起来看看吧!下面是我整理的相关资讯,欢迎阅读。

美国留学材料科学与工程专业个人陈述范文三篇

范文一

Academic and research background

The desire to know more about the nature has motivated me to step into the broad world of science. I have cultivated my great interest in physics, chemistry, biology and a lot of related fields since I was very young. I was armed with strong foundation in physics due to my three years’ time in Tianjin Nankai High School, (one of the most famous high schools in China).

In the September of 2000, I entered University of Science and Technology of China and became a member of physics department since then. New environment always brings unexpected difficulties, and great effort has given by me to get adapt to the new life. During the period of hard trying, both my knowledge and my maturity have remarkably grown and I finally got rank above 12 % of 140, with overall GPA 3.5/4.0, and major GPA 3.8/4.0. My hard working finally earned me the Outstanding Student Scholarship in 2003.

Besides enhancement of knowledge in physics, I have also accumulated a great deal of knowledge in chemistry and material science. I have got 95/100 in “The Structure and Properties in Solid and Solid State Chemistry” and 87/100 in “Solid State Optics and Spectroscopy”, among the top scores in class. Moreover, I have made effort to improve my ability in mathematics and computer science cautiously.(附加的段)

My two years’ research in Structure Research Laboratory of USTC has brought me to a more extensive and practical field of physics. Served as an undergraduate research assistant in Professor Xianhui Chen’s group, I have devoted most of my time to the research and my knowledge in condensed matter physics and its related fields have greatly increased. I have obtained all the basic experimental skills in a very short time and in order to keep with the pace of the latest achievement in my research field, I have spent a large amount of time in reading related journals, such as Appl. Phys. Lett., J. Appl. Phys., Phys. Rev. B, Phys. Rev. Lett., J. Solid State Chem. and so on.

At the beginning of 2003, I began my systematical work in exploring the growing method and transport property investigations in hole-doped single crystal BSLCO (Bi2Sr2-xLaxCuO4+y) series and electron-doped NCCO (Nd2-xCexCuO4-y) series. My work was focused on the single crystal preparation and physical property measurement, especially the transport property and magnetic properties. After so many times of attempt in the melting range and descending speed, I successfully grew a great deal of single crystals with high quality. Moreover, I have spent so many days and nights together with my colleagues in lab measuring the resistance of the single crystals under zero field and high field. Due to the high quality of the crystals and our hard work, we finally obtained plenty of meaningful data and by analyzing the normal state property, I have submitted a paper titled “Field-induced log (1/T) diverging resistivity deviation from normal state in superconducting cuprates” to Phys. Rev. Lett. in 2003 as the third author. However, my work was not stopped and with further investigation in the 2D weak localization system, I have submitted another paper to Europhys. Lett. in October 2003 as a co-author.

Besides, through the work, I obtained almost all the skills of manipulation of the corresponding instruments from physical preparation to characterization, such as M.Braum Glove-Box system (Germany), MORRIS High Pressure system (Berkeley), Rietveld and Lebail Refinement of crystal structure from XRD pattern, 17 T Ultra-High Magnetic Field system (Oxford Science), AC Assistance Bridge (Liner Research Inc.) sputtering and so on. What’s more, I can skillfully use software, (GSAS, FullProf, CELL PCPDFWIN and etc), to analyze the structure of the material through X-ray diffraction data.

Beyond the achievement in research, the happiness I gained from the cooperation with others and the approach of the physics science was greater. Times of failure make me believe that the persistence is the only thing to make people gain their goals and the research work needs active and creative thinking. I often have discussion with other members in my group not only on the current encountered problem but also on the some new ideas for research. During the weekly group meeting, we often exchanged our views on our current research project and I have learned a lot through this communication.

Meanwhile, I never give up searching for more extensive and challenging field. Actually, some of my present work is from my own idea. Known the misfit layer of CoO2, I have grown some single crystals of highly efficient thermoelectric materials, such as Bi2Sr2Co2O, Bi2Sr2CoO6+y, Ca3Co4O9....... In order to find the relationship between the misfit structure of CoO2 layer and the high thermoelectricity, magneto-resistance and magneto-power, I have investigated the low-temperature transport, thermal and magnetic properties. By reading a number of related papers, I plan to take further investigation of these materials through their thermoelectric potential and other related measurements.

With great interest in nano science, I have paid extra attention to the update technique in synthesizing the nanowires and nanoparticles. Both from the corresponding books in this field and experience of the PhD students in my group, I grasped a number of methods, such as micro-emulsion, hydrothermal method, sol-gel and other soft chemical ways to synthesize the nano scale materials. Under the available condition, I am synthesizing the nano scale superconducting material YBCO and nanowires of magnetic materials, such as La0.5Ba0.5MnO3.

More and more do I realize the importance of collaboration, during my exploring of the novel polycrystalline Co1212 and Fe1212. The samples were reported by some group to be superconducting only if it is annealed under the extreme pressure. I have measured the transport property of the crystals and observed some abnormal phase transition of superconductivity. However, because of the limitation of experimental condition, our samples cannot become superconducting. In order to solve the problem, we cooperated with Institute of Physics of China Academic Science to obtain the extreme pressure. Two papers of my work on Co1212 have been submitted to the international journals late this year, and I was the second author. In this case, I realized the cooperation within and without a group is equally important, and sometimes accomplishment is gained under several groups of people. We also have done some work in YBCO thin film transport property, collaborated with professor C. L. Chen of Superconducting Center Texas, U.S.A.

In addition, I have also attended some of other sub-group’s research project, such as using sol-gel method to grow Ru1212, NaCoO2 transport property investigation and colossal magneto resistance materials preparation. What’s more, I have also attended the 7th National Superconductivity Conference and National Annual Conference of Physics in 2003. My ken was greatly enlarged by hearing the report of the attendance and my confidence in my research was increased at the same time.

Research interest and future plan

Material of science and engineering is concerned with the study of structure, properties and applications of materials. During my two years’ research in Structure Research Laboratory, I have accumulated plenty of knowledge in the related area of material science, and meanwhile my ability in doing research is greatly proved. In the past work, I have done quite a lot in synthesis as well as characterization, and I have also deal with different classes of materials, such as electronic, magnetic, superconducting and so on. I believe, aimed with strong foundation of physics, the appropriate area for me to take research work will be more extensive.

The area of interest is just as following:

1. I have read a lot of corresponding papers in magnetic recording research, and I have great interest in this kind of materials. I believe research in this area is important both for basic studies of the effects of dimensionality and interactions, and for the future of magnetic recording. Hence, I wish to do some work in synthesis and processing of this kind of materials.

2. Because nano materials, such as carbon nanotubes, nano particles, quantum dots, nano-porous structures, and nano-electronics device materials, are the essential part of the current and future nano-based technologies. I hope very much to continue my future research work in this area.

3. Moreover, I am also interested in the structural material, such as advanced engineering materials, which characters may be changed responding to the different mechanic condition. So I think I also hope to do the related research in analysis of materials property.

My future plan is to pursue my PhD degree in material science and engineering. In fact, though the technology is developing at a tremendous speed, there is still a lot of progress remaining to be made. For instance, nanoscale devices, either assembled lithographically or chemically, will have a high probability of failure. Therefore, any architecture built from large numbers of nano scale devices will necessarily contain a large number of defects, which fluctuate on time scales comparable to the computation cycle. Furthermore, deeper insight should be given into the constraints imposed by nano-devices, especially carbon nanotube-based devices, by modeling the devices and corresponding architectures. Such a framework can contribute towards building more powerful nano-probes, nano-computer and efficient power fuel-cells.

Why I Choose UCSD

UCSD is world famous for its outstanding faculty and reputation. Though the economic condition in California is not so satisfying at the moment, I believe it will not impede the future development of UCSD.

The Materials Science and Engineering Program at UCSD aims to provide fundamental knowledge for understanding of materials with the objective of predicting, modifying, and tailoring the properties of materials to yield, at the technology level, enhanced material performance. Also, I was greatly impressed by the great collaboration of different departments, which makes the Materials Science department more competitive and attractive. With so many outstanding professors and so broad research areas, I was convinced that the Material Science and Engineering Department is always the best choice for me to pursue my PhD degree.

范文二

Brought up in a shabby and cramped small apartment, I was fascinated in my childhood by the exquisite houses and condominiums I watched on TV in images that had been shot in the developed countries. It has since been my dream to build up in China the same kind of quality human habitat. I believe that this dream can come true if I get to undertake advanced studies in architecture at your university.

I am now erecting fundamental building blocks towards the realization of my dream at the Harbin Institute of Technology (known as HIT), from which I am scheduled to graduate next year. This elite institution accepted me in 1995 in recognition of my strong performance in the National University Entrance Examinations, held once every year nationwide to screen high school graduates for higher education. Here, I have received vigorous training in structure engineering, an area of study that is essential to the country's frenzied construction industry.

Deeply in love with my chosen area of studies, I have turned my mind into an engine of creativity during three years of disciplined learning. Courses of my major, particularly structure mechanics, architecture material, and survey of engineering, fascinate me so much that I am sometimes completely enthralled in studying them. Looking now at the reinforced concrete structures around me, I not only detect the configuration inside easily but also arrive at some preliminary assessment of its strengths and weaknesses quickly. Everything that comes into my sight presents itself in the framework of some form of structure. Carefully groomed as the only child in my family, I cannot stand being the second best in any group and situation, especially when it comes to a contest of intellectual caliber. At HIT, I beat the odds and excelled all most of my fellow students in academic studies, making myself the undisputed academic leader of the class. Students and faculty alike are so accustomed to my academic excellence that everybody would be surprised in class if I happen not to be able to answer a question better than others even once. My motto is : one either comes out the first, or he is a failure. The university has awarded me a string of scholarships and other accolades in praise of my academic achievements.

But I am no bookworm. In fact, I am constantly engaged in a host of extracurricular activities, for which I have been conferred a Special Commendation for Participation in Social Activities. I have run and won the position of monitor in my class during my first semester, which made me a natural student leader. Active on campus, I was then appointed the recreation officer of the Student Association, in charge of organizing entertainment and other recreational events for the benefit of the students. I now also serve as the president of the Society of Student Architects and Engineers. Such involvement in the student affairs has tempered my skills in leadership, organization and communication. But more importantly, it has broadened my horizon and deepened my insights in terms of what constitutes beauty, grace and strength, which I believe will always help me in my engineering designs.

I would like to mention here my passion for a uniquely oriental sport called weiqi, known as the go in the English parlance. An intricate chess game, it is challenging to even the best and brightest minds. One usually has to be a full-time player to play it well. Not to be daunted, I not only joined the Weiqi Club on campus but also taken part in a national contest, in which I won the 12th place and the HIT team I led won the 3rd place. My achievement in the weiqi sport testifies to my superior mental power and intellectual resourcefulness.

To tap fully into my intellectual resources, I would like to take up the greater challenges of helping to design my country's skylines in the 21st century. For that, I need better training that what I have received. An American education will expose mw to new perspectives and endow me with new inspirations. When I get to combine my Chinese perspectives with those of the West, I should have no trouble fulfilling my ambition of cutting one of the best structure engineers in the world. With that, I want to design and build the most beautiful structures in China.

To ensure both my future and that of my country's construction industry, I sincerely hope that I could be admitted into your university. I am confident that, if I can be lucky enough to study under your seasoned guidance and with your kind financial assistance, many people in China will never have to endure the kind of shabby and inconvenient apartments that I endured as a child.

日本留学新材料类专业

相关专业:高分子材料与工程、复合材料与工程、再生资源科学与技术、稀土工程等。新材料的应用范围非常广泛,发展前景十分广阔,其研发水平及产业化规模已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。“十五”计划开始以来,国家产业政策导向明显向以新材料产业为代表的高新技术产业倾斜,这对新材料产业发展无疑将产生重要的推动作用。/zd/xx

材料物理学专业出国读研可以去哪些学校

 1、麻省理工学院(MIT)

MIT里的faculty每个都是大牛级,每个都有一堆的nature,science,至于PRL(physical review letters)级别的文章,对他们可以说只是普通的成果。

MIT的物理系的研究工作包含四个研究领域:天体物理;原子、凝聚态及等离子体物理;实验 原子核物理与粒子物理;理论原子核物理与粒子物理。

2、芝加哥大学(U Chicago)

世界上第一台核反应堆就是在芝加哥大学的足球场看台下诞生。芝加哥大学也是美国诞生 诺奖获得者最多的学校。

研究领域包括天体物理与宇宙学;凝聚态物理;生物物理;原子物理;广义相对论;原子核物理;粒 子物理。凝聚态物理的研究包括薄膜,量子输运等。相对较强的方向是粒子物理。凝聚态的实力也 不错。

3、康奈尔大学(Cornell)

常春藤盟校之一。

物理系研究领域有粒子物理,天体物理及广义相对论,加速器物理,凝聚态物理及生物物 理。凝聚态物理为一个大组,其研究方向包括:非平衡系统原理,复杂流体及聚合物,临界现象及 相变,纳米结构,低温物理,量子波动及量子纠缠,超冷原子等。David M. Lee和Robert C. Richardson教授曾共同获得96年诺贝尔物理学奖。

 4、伊利诺伊大学厄巴纳-香槟分校(UIUC)

Deadline为1月15日。

UIUC的物理系是全美最大的物理系之一。两次诺奖获得者,肖特基晶体管的发明者之一和 低温超导理论的提出者——John Bardeen教授就出自UIUC的物理系。UIUC的物理系是全美凝聚态 物理方向的top1,量子物理排名第7,原子核物理排名第8.

5、得克萨斯大学奥斯汀分校(U Texas Austin)

科研大牛校,位于德州州府Austin。学校规模很大,学生很多。其石油工程专业排名全美 top1。UT Austin在AMO和凝聚态方面都有不错的实力。方向包括飞秒光学,量子输运,BEC等。

6、威斯康星大学麦迪逊分校(U Wisconsin Madison)

这所学校非常看重硬件条件。

AMO方向有四个组,分别研究非线性光学与原子物理,原子碰撞,量子计算与超快科学, 超冷原子与激光冷却。凝聚态是一个大组,教授的研究方向包括纳米材料,纳米器件,纳电子学, 纳米力学,NEMS,MEMS,超导,量子计算,飞秒科学,生物材料,聚合物,磁性薄膜等。

7、佐治亚理工学院(Gatech)

位于佐治亚州的亚特兰大,与可口可乐的总部毗邻。理工科实力非常强悍。

原子与分子物理的研究方向包括原子操纵,量子信息,纳米结构以及利用超低温技术研究 量子力学问题。

生物物理组是与生物和生物医学工程合作的,方向包括细胞表面的微拓扑学,吞噬作用的 机制,病毒蛋白壳(阮),RNA结构,动物运动,纳米级相互作用等。方向都很交叉且很新。 光学方 向有研究量子光学的,有研究超短脉冲的(在光通信中有很广的应用),也有研究在通信,遥感及生物 技术中应用的新型器件。

凝聚态方向包括表面物理,低温物理,纳米量级的物理性质,graphene,MBE,软材料 ,原子级的固体性质,低维系统的光学性质,超导,纳米级流体,纳米生物力学以及纳米摩擦学等 。

可以发现的是,Gatech的物理系顺应其学校的工科强悍的特点,物理系的研究也很前沿且 很偏应用。应物的同学很值得去尝试一下,不过要注意这家对于ibt的要求很高。按照近两年的情形 ,申请Gatech的难度并不算太高,所以应物专业的同学都可以试试。

8、俄亥俄州立大学(OSU)

这是一所大众情人校,也号称“only score university”。不过OSU确实很看重硬指标, 高GPA和高GT成绩就有不小的概率拿到offer。

OSU的物理系的凝聚态组较大,实力也很强,其他的组相比之下都比较小。

凝聚态物理的研究非常偏向应用,非常偏向电子产业,且方向都很新。其的研究方向包括 :复杂流体,纳电子学,固体电子学,电子材料,聚合物,磁学,磁性纳米材料,高温超导,超材 料(metamaterials,很有前途的一个研究方向),各种新材料的光学和电磁性质等。其中,Pual Berger教授是纳电子学,半导体等方面等著名学者。

 9、莱斯大学(Rice)

物理系规模不大,主要的研究方向为AMO和凝聚态物理。

Rice的AMO方向实力较强,排名全美第九。

凝聚态物理的研究方向包括新材料,纳米材料等。Rice大学的Quantum Institute的研究 做得不错,小有名气。

Rice还有一个applied physics项目,教授来自多个系,如ECE,MSE等。应物的同学可以考 虑一下。

10、布朗大学(Brown University)

位于罗德岛州的普罗维登斯市(Providence)。常春藤八所之一。

凝聚态的主要研究方向包括超导,薄膜,强关联系统,巨磁阻效应,低维系统,低温物理 ,纳米科学,光电子学等。基本粒子物理的研究也具有一定的实力。

物理系还有一个脑科学研究中心,是个与生物,语言,数学等系交叉的项目。

以上是美国物理专业推荐院校的相关介绍,欢迎参考。

日本留学材料专业全面解析

 日本是一个科技发达的国家,七水平仅次于美国,可见日本的科技教育也是非常不错,特别是在很多材料方面,水准极高,那么日本留学的材料专业到底怎么样呢?有哪些专业是比较受材料企业的青睐呢?跟着我来看看吧!欢迎阅读。

 日本留学材料专业的相关解析

 一、日本新材料政策

 日本政府发布的《日本产业结构展望2010》的报告以新成长战略为指导,将包括高温超导、纳米、功能化学、碳纤维、IT 等新材来技术在内的10 大尖端技术产业确定为未来产业发展主要战略领域,就相关领域的现状和问题、发展方向进行了分析,并提出了相应的行动计划。

 1.高温超导技术领域 2.纳米技术领域 3.碳纤维领域 4.功能化学技术领域 5.高性能IT技术领域

 二、日本新材料产业状况

 1.新材料工业化现状 2.日本新材料优势领域 3.新材料市场占有状况

 4.产官学合作体制推动新材料产业发展

 三、日本主要院校基本录取标准

 商科专业:211大学均分至少85以上,非211大学基本可以不考虑申请商科类。

 法律专业:211大学均分至少83左右,日语1级,雅思不低于7。

 理工科专业:211大学均分82左右,日语2级,雅思6.5以上。

 文科专业:211大学均分80左右,日语1级,托福80以上。

 金融、经济、投资等专业需要GMAT或GRE成绩。

 四、日本主要的新材料企业

 1. JX控股

 行业:石油和煤 2013年营业额: 1194亿美元

 2. 日本出光兴产

 行业:石油和煤 2013年营业额:528亿美元

 3. 新日铁

 行业:钢铁 2013年营业额:492亿美元

 五、日本主要材料名校

 1.京都大学

 京都大学为1869年建立、1897年开设大学教育的日本国立大学,简称?京大?,综合实力排名日本第二,是继东京大学之后的日本第二所国立大学。

 2. 东京大学

 东京大学(The University of Tokyo),简称东大,诞生于1877年,初设法学、理学、文学、医学四个学部,是日本第一所国立大学,也是亚洲最早的西制大学之一。学校于1886年更名为帝国大学。

 3. 东北大学

 日本东北大学是一所国立大学,是继东京大学、京都大学之后日本第三个国立大学,位于日本东北地区仙台。

 4. 大阪大学

 大阪大学(Osaka University),简称阪大,是一所位于日本大阪府吹田市的国立研究型综合大学。其前身是成立于1931年的大阪帝国大学,起源于1838年的兰学塾?适塾? 。

 5. 东京工业大学

 东京工业大学(Tokyo Institute of Technology),简称东工大,是一所校本部位于东京都目黑区的,以工程技术与自然科学研究为主的世界一流理工大学。

 6. 九州大学

 九州大学(Kyushu University),简称九大,是一所本部位于日本福冈市的著名国立研究型大学,在日本以及世界上均占有一定的地位公立大学。

 以上是日本留学多金材料专业的相关介绍,希望可以帮到您。

英国有哪几所大学适合材料专业留学?

英国是一个历史悠久的国家,英国的教育体系完善,有很多学生申请到英国去留学,如果要在英国学习材料专业有哪些大学比较适合呢?一起来看看相关的介绍吧!

  一、英国材料专业院校推荐

 拉夫堡大学

 拉夫堡大学MSc Materials Science and Technology经由IOM3英国材料、矿业与采矿协会认证,学生毕业后有机会获得CEng特许工程师资格。

 开设的必修课有:高级塑造技术、表面工程、陶瓷加工与特性、工程材料设计、可持续使用材料(一周结课)、金属加工与特性、毕业论文。

 谢菲尔德大学

 谢菲尔德大学工程学院已经有100年的历史,他家的MSc Materials Science and Engineering侧重于所有类型材料的基础知识,学生有机会接触到最先进的材料研究。

 开设的必修课有:材料学,材料加工与塑造,实践、建模与数字技能,研究项目等。

 埃克塞特大学

 埃克塞特大学MSc Materials Engineering为学生提供材料学最新发展趋势以及材料在新技术方面的应用,侧重于用在汽车、航空航天、技术和新能源领域材料结构的理论知识和计算模拟,学生有机会去企业参观学习。

 曼彻斯特大学

 曼彻斯特大学(Manchester),简称曼大,罗素盟校成员之一,是一所门类齐全,科系众多的综合性大学,位于曼城的市中心的大学村内,现在该校共有在校学生18000名,分别来自英国当地和世界其它国家,其中包括来自海外120个国家的2500名学生,全校现有教职员工3000名,其中很多是享誉世界的著名科学家。

 斯旺西大学

 斯旺西大学MSc Materials Engineering经由IOM3英国材料、矿业与采矿协会认证,该专业在国际上还是有一定地位的,曾在英国国家高等研究拨款委员会评估中获得满分,还参与过空客A380的研发,航空和钢铁材料研发有一定优势。

 利兹大学

 利兹大学MSc Materials Science and Engineering旨在为自然科学、数学、技术或其他工科学生提供材料学与工程或者冶金术方面的知识和技能,以应对运输、生物工程、能源、电子与信息技术、体育、可持续发展等领域中先进材料和制造面临的挑战。

  二、材料专业介绍

 材料成型及控制工程专业研究通过热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。

 本专业涉及的知识面广、信息量大,注重英语能力、计算机能力和实际动手能力的培养,使学生具有很强的适应能力、创新能力、分析和解决问题的能力。由于本学科是国民经济发展的支柱产业,因此国内紧缺具有该专业国际背景的人才。

  三、英国材料工程专业就业前景

 该学科的就业十分广泛,毕业生可在政府经济管理部门或建设单位、设计单位、建筑施工企业、工程建设监理单位、房地产开发企业、工程咨询公司、国际工程公司、投资与金融等单位从事工程管理等工作,也可在高等学校或科研机构从事相关专业教学或科研工作。

 而在中国,材料工程专业的学生毕业后可以到高分子材料及高分子复合材料成型加工、高分子合成、化学纤维、新型建筑装饰材料、现代喷涂与包装材料、汽车、家用电器、电子电气、航天航空等企业从事设计、新产品开发、生产管理、市场经营及贸易部门工作,也可以到高等学校、科研单位从事科学研究与教学工作,还可以到政府部门从事行政管理、质量监督等工作。

 从未来长远发展看,材料领域绝对具有非常广阔的前景。如今,纳米材料、石墨烯、智能材料、生物材料等一大批功能新材料的涌现,在3D打印、智能制造、新能源、生物医药等领域扮演着重要角色日新月异的现代技术的发展需要很多新型材料的支持。

 航天、军事和工业现代化、科技化及人工智能的发展,都离不开材料作为基础。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。只不过,材料行业不像金融等行业听上去那么光鲜亮丽,这是一个需要稳扎稳打、一步步成长的领域,也是一个可以改变世界的领域

  四、专业方向

 21st Century Materials;

 Advanced Materials;

 Aerospace Materials;

 Biomedical Materials;

 Biomedical Materials Science;

 Chemistry Of Materials;

 Composite Materials Engineering;

 Materials Chemistry;

 Materials Design;

 Materials Engineering;

 Materials Evaluation;

 Materials Science;

 Materials Studies;

 Materials Technology;

 Medical Materials Science;

 New Materials Technology;

 Science Of Materials。

好了,关于“留学材料专业”的话题就讲到这里了。希望大家能够通过我的讲解对“留学材料专业”有更全面、深入的了解,并且能够在今后的工作中更好地运用所学知识。

微信号咨询

请添加微信号咨询:19071507959

在线报名

标签: 留学材料

留学材料专业_留学材料专业档案袋由留学帮手网留学材料栏目发布,感谢您对留学帮手网的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“留学材料专业_留学材料专业档案袋